SIEVE OF ERASTOSTHENES

The sieve was created by the Greek mathematician, Erastosthenes. It is a way of identifying prime numbers in a set. (Prime numbers are those numbers that have factors of only 1 and the number itself.)

										-
1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	My
81	82	83	84	85	86	87	88	89	90	husband has a
91	92	93	94	95	96	97	98	99	100	memory like a sieve!

1 is neither prime, nor a composite number.

Begin with 2. Keep 2, as it is prime, but get rid of all the multiples of two. (Cross them out with a colou) pencil.

Now go on to 3. Is 3 prime? (Has it any other factors, except 1 and 3 itself?)

Go on to the next available number and continue.

You should end up with a number of squares not crossed out. If you have done it correctly, these will all be prime numbers. List them in the box below.